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EXECUTIVE SUMMARY

Small cracks developing from rivet holes in lap joints of fuselage structure have been an issue of
concern over the past decade. Stress-intefesitor solutions required to assess the structural
integrity of such confyurations are lackimp To address this need, the domaingrdaé method

was used in this research to obtain the modermalized stress-intengitactor distributions for

cracks emanating from a centyalbcated countersunk rivet hole in a square plate subjected to
remote tension. Particular attention was focused on short cracks with an elliptical shape that
have not propagated through the thickness. For these short cracks, the normalized stress-
intensily factor distribution depended on the shape and size of the crackysiinahs also
conducted on long through-the-thickness cracks with a straight front for which the normalized
stress-intengytfactors were uniform.
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1. INTRODUCTION.

During the last two decades, various methods, such as the finite element method (with or without
singulariy elements) and the bounglantegral equation method, have been erygdioto obtain
stress-intengyt factor distributions for surface cracks and corner cracks in plates, see, Raju and
Newman [1] and Newman and Raju [2]. Another well established and partrausaful method

for evaluating fracture parameters is the domain integral method in which the crack tip integral is
recast as an integral over a finite domain surrounding the crack tip. The calculation of the crack
tip parameters of interest can then be carried out in glsficiward post processystepin the

finite element method. The domain integral method has been yedplp Shih, Moran, and
Nakamura [3] to evaluate the engrelease rate along a three-dimensional crack front in a
thermally stressed badand has been used blikishkov and Atluri [4] b evaluae the mixed-

mode stress-intengifactors along an arbitnathree-dimensional crack.

In this report, we empjothe domain integral method to obtain the mbd&ess-intensgjtfactor
distributions for elliptical and straight cracks emanating from a centiadhated countersunk

rivet hole in a square plate subjected to remote tension. Particular attention is focused on short
crack$] cracks that have not propagateddred the edge of the countersink. Related work on
elliptical cracks emanating at various locations from countersunk rivet holes has been recently
carried out g Tan et al. [5] using the finite element alternating methbdthe finite element
alternating method, two solution procedures are required to obtain the stressyirfeisit
distribution for a particular crack geomein a finite bog. First, the stress distribution in the
uncracked solid is obtained Ithe finite element method. Second, the wrel solution for an
embedded elliptical crack in an infinite solid is combined with the finite element solution. The
resulting nonzero tractions onternal surfaces and crack faces are then canceled in an iterative
manner using suitable pwolomial inverse functions and finite element solutions on the
uncracked geomstr

Although fracture parameters can be obtained aecurate} using the domain integral method

for arbitray three-dimensional geometries, the methogeasive in terms of the time required

to generate a mesh, in-core storage requirements for large three-dimensional calculations, and
solution time. Meslgeneration is particularitime consumig due to the difficulties associated

with constructing a mesh which accurgtebptures the singular nature of the stress field in the
vicinity of the crack front and near stress concentrations. On the other hand, the finite element
alternating method is less time consuming because tbel uncracked geomgtneeds to be
meshed. The present work will compare stress-interiaittor solutions for aivet hole
geomety with solutions obtainedybother techniques orylother finite element discretizations.

We define the geomeatrof the problem in section 2 and present a general three-dimensional
domain integral formulation and associated finite element implementation in section 3. The
numerical results are presented in section 4, followed lsummar and some concluding
remarks in section 5.



2. PROBEM FORMULATION.

We consider the problem of a square plate with a centlatlated countersunk rivet hole
subjected to uniform tensile loading as shown in figure 1. The dimensions of the plate are

W/H=1.0
W/R =9.6

and the remote applied stress is taken to bg agit 1 MPa. A cross-sectional view illustrating

the characteristic dimensions of the rivet hole is shown in figure 2. We choose a Cartesian
coordinate gstem such that the load acts in thdirection as shown. The countersink angl

and the ratios h/t and R/t are taken to be that of a standard rivet configupati®@( h/t = 0.2,

R/t = 1.954). These dimensions are also consistent with the dimensions of the sample used in a
recent &perimental stug by Fadragas and Fine [6]. The plate material is assumed to be linearly
elastic and isotropic. The elastic constants of the plate are taken to be that of Alclad 2024-T3
aluminum with a Young’'s modulus of 73 GPa and Poisson’s vati@.3.
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FIGURE 1. SPEGMEN GEOMETRY (W/H=1.0, W/R=9.690 =1 MPa)
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FIGURE 2. SPECIMEN GEOMETRY (h/t=0.8=50°, R/t=1.954)

In the present analysis, cracks with elliptical crack fronts of various shapes and lengths were
assumed to initiate at the intersection between the countersunk and straight shank portion of the
rivet hole as shown in figure 3. We define three crack growth regions as |, Il, and Ill respectively
as shown in the figure. The extent of the crack growth regions is defined as follows:

Regionl O<a<h
Regionll h<a<d
Region lll d<a

where a is the major or minor axis of the elliptical crack measured from the origin of the
coordinate system in figure 2, d is the dimension from the origin to the end of the countersink,
and h is the height of the knee in the countersink. The crack front is assumed to be elliptical in

regions | and Il with various shapes defined by the ratio a/c. The crack front is assumed to be
straight in region Il

FIGURE 3. THE THREE CRACK GROWTH REGIONS |, Il, AND I



3. DOMAIN INTEGRAL METHOD.

In this section we outline the formulation and finite element implementation of the domain
integral method. Consider a curved crack frgimtg in the %' - x3 plane as shown in figure 4.

We denote v s and v(s) a poinying on the crack front and the in-plane unit outward normal
vector at s, respectiwel The pointwise eneygelease raté(s) is given by

J(s) = v, (s) rlm_[r@[wdk — 0 U, Jm;dr 1)

where W is the strain engrglensiy, o; and yy are the Cartesian components of the stress and
displacement, and mare the components of the unit outward normal to the dulyeng in the

X1'- X2 plane which passes through point s as shown in figure 5. TheyaetFgsed when a
finite sggment, L¢, of the crack front advances an amalal(s) is given by

JNa = AaJ’LC ISV (9 (9)dS 2)

where k(s) are the components of an arbigranit vector at sying in the plane of the crack.

«
X3

V(s)

v

!

X1
FIGURE 4. APONT sLYING ON A CURVED CRACK FRONT
By substitutimy equation 1 into equation 2, we obtain the follayixpression ford :

wherel'; is a tubular surface surrounding the crack segment L
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FIGURE 5. THE DOMAIN V ENCLOSED BY THE TUBULAR SURFACES &ND I

In order to obtain a domain integral, we introduce another tubular susfadgc surrounds;

as shown in two dimensions in figure 5. In the figure, we denotethg unit outward normal to

the surface Sand define V to be the volume enclosed by the surfagey, and the upper and

lower crack surfaces’Gnd C along the crack segment. In the absence of body forces, thermal
strains, and crack face tractions, the bracketed quantity in equations 1 and 3 is divergence free.
Hence, letting

Hi = 05U — WQ, 4)
it follows that

Hei = 0O invVv (5)
We now define a vector-valued test functignas follows:

Oy

=D ond (6)

Assuming q is sufficiently smooth to justify the following manipulations, we take the inner
product of g with the left-hand side of equation 5 to obtain

fyHadVvV=0 (7)

Next, we employ the divergence theorem and the definition of the test function (equation 6) to
obtain

Irt HqlnjdA :IVHkiQk,idV (8)



Noting that n=-m onT, we obtain an expression fdrin terms of the volume integral
J= [y Ha G dV 9)

Finally, if we assume that J(s) is constant over the crack segmed{d) can be taken outside
the integral in (2) and we obtain a simple expression for J(s) in terths of

J

J(S) = -
IL |V, ds (10)

In order to illustrate the numerical evaluation of equation 10, we consider a schematic
discretization of the volume V surrounding the crack segment into 32 eight-node brick elements
as shown in figures 6 and 7 (more refined meshes are used in the actual calculations). A cross
section of the schematic finite element mesh perpendicular to the crack plane passing through
node M on the crack surface is illustrated in figure 6. A view of the mesh cross section lying in
the plane of the crack and passing through M is shown in figure 7. Consistent with a standard
isoparametric finite element implementation, we define the test fungtiafitign an element in

V using the trilinear finite element shape functions, i.e.,

8

Ok = aglNana (11)

S .
X1
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FIGURE 6. CROSS SECTION OF A FINITE ELEMENT MESH PERPENDICULAR TO
THE CRACK PLANE PASSING THROUGH NODE M



FIGURE 7. CROSS SECTION OF A FINITE ELEMENT MESH PARALLEL TO
THE CRACK PLANE AND PASSING THROUGH NODE M

In equation 11, ¢} are the discrete nodal values of the test function. In the present analysis we
have chosen the nodal values such that

Q% = %/k'v' if x;2 =0 and|x2""| <b and| )q_'a| < a

D otherwise (12)

In other words, the nodal valueQs defined to be equal to the in-plane unit normal vector

vi™ at node M if the node lies in the plane perpendicular to the crack plane which passes through
node M and does not lie on the boundary of V. In the present implementation, we have defined
the volume V to be rectangular with height b and width a as shown in figure 6.

The discrete form of the integral (9) is then written as

3" = > {Jo, Hi G, €3 (13)
ellv

where
8 a
g, = lea,i Q« (14)
a:

In the present analysis, the integration (13) was carried out using 2x2x2 Gaussian quadrature.



In order to evaluate the integral in the denominator of equation 10, we assume that the energy
release rate is constant over the crack segmeantd_define the vectdy along the crack segment
as follows:

v _ B, atnodem

|
“ atall othernodeson crackfront (15)

By takinglk to vary linearly between the nodes M - 1, M, and M + 1 as shown in figure 7, we
obtain the pointwise energy release rate at node M

o 23"
L, +L,

(16)

where L and L, are the lengths of the element edges containing nodes M - 1, M, and M + 1.

A typical finite element mesh used in the numerical calculations is shown in figure 8. Due to
symmetry, only one quarter of the plate was analyzed. The mesh shown in the figure is made up
of 5312 eight-node brick elements (with 6,497 nodes and 19,491 degrees of freedom) and was
employed to obtain the stress-intensity factor distribution along an elliptical crack front located in
region I. A magnification of the mesh in the vicinity of the edge of the countersink is shown in
figure 9. In order to construct the finite element domains necessary for the present domain
integral approach, a two-dimensional rectangular mesh composed of 51 elements was swept
around the elliptical crack front to create the three-dimensional mesh as shown in figure 10.

\ |
|

/S /

FIGURE 8. THE FINITE ELEMENT MESH FOR THE CASE OF AN ELLIPTICAL
CRACK LOCATED IN REGION |



FIGURE 9. A MAGNIFICATION OF THE MESH NEAR THE INTERSECTION BETWEEN
THE COUNTERSUNK AND STRAIGHT SHANK PORTION OF THE RIVET
HOLE

FIGURE 10. THE FINITE ELEMENT DOMAINS ALONG AN ELLIPTICAL CRACK
FRONT

Before performing the numerical calculations, benchmark comparisons were carried out in order
to validate the present three-dimensional domain integral implementation and to determine the



necessar mesh refinement. Stress-integisfactor distributions were obtained for both an
embedded elliptical crack and a quarter elliptical corner crack in a gatdaplate. As reported

in Gosz and Moran [7],xeellent agreement was observed between the finite element/domain
integral solutions and the benchmark solutions from the literature.

The meshes empjed in the present calculations had between 18,000 and 21,000 degrees of
freedom, and the calculations were performed on a Silicon Graphics R4000 workstation
equipped with 192 meggtes of random access memg¢oRAM).

4. NUMERCAL RESU.TS.

In all of the numerical calculations, the pointwise epeetpag rates J(S) along the crack front
were obtained yothe domain integral method as described in the previous section. The mode |
stress-intengjt factors K (s) at each point along the crack front were obtained using the plane
strain relation
nex9 '?
> U

Ki(®=0—>%
l-v° O

(17)

where E is Young’'s modulus and is Poisson’s ratio. Although we recognize that the

ag/mptotic field has a lower order singulgrithan 1/ Jr near intersections of the crack front
and free surfaces, thatent of the boundgrlayer is known to be small and thus equation 1 was
used throughout for the computation of. K

The modd stress-intengjtfactor at a point along the crack front can kpressed in terms of the
remote applied stress, and a boundgrcorrection factor F as

K,(s) = F(a/c,alt,0)0,/eQ (18)

where the parameter Q is the square of the complete elliptical integral of the secona kimsl.
report, Q was apprimated ly the formula given pRaju and Newman [1],

.65
Q=1+ 1464%@1 %<1 (19)
C

Bounday correction factors F for elliptical cracks located in redi@me plotted versus phical
angk 0 in figures 11-13.In figure 11, the boundgicorrection factors are plotted along the crack
front for a/c = 0.4 for three different ratios of c/h (c/h = 0.4, 0.6, and 0.8). Ndte tisathe
characteristic dimension of the ellipse as showngdaré 3, and h is thbeight of the straght
shank portion of the rivet hole. The boundeorrection factors for the case where a/c = 0.8 and
a/c = 1.0 are plotted versusygital angle for four different ratios of c¢/h (c/h = 0.2, 0.4, 0.6, and
0.8) in figures 12 and 13, respectivelAs shown in the figures, the boungaorrection factor
distributions depend heayilon the ratio a/c, but the distributions for each ratio of a/c do not
significantly differ for different values of c/h.

10
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FIGURE 11. BOUNDARY CORRECTION FACTORS F VERSUS PHYSICAL ANGRE
FOR ELLIPTICAL CRACKS LOCATED IN REGION | (a/c = 0.4, ¢/h = 0.4,
0.6, AND 0.8)

4.0 L T—1 7 T 1T T l T T I T 1 1 T 1 T L

—o—¢/h=0.2
—o—¢/h=04 b
—a—¢/h=0.6

—e+—¢/h=0.38 b

Region I
a/c=0.8

F 35

30 |r1|1'1||v1||11»![11]14!|11L
0] 20 40 60 80 100 120 140

O (degrees)

FIGURE 12. BOUNDARY CORRECTION FACTORS F VERSUS PHYSICAL ANGRE

FOR ELLIPTICAL CRACKS LOCATED IN REGION I (a/c = 0.8, c/h = 0.2,
0.4, 0.6, AND 0.8)
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FIGURE 13. BOUNDARY CORRECTION FACTORS F VERSUS PHYSICAL ANGQE
FOR ELLIPTICAL CRACKS LOCATED IN REGION | (a/c = 1.0, ¢/h = 0.2,
0.4, 0.6, AND 0.8)

The boundary correction factors for elliptical cracks located in region Il are plotted versus
physical angle in figures 14 and 15. In figure 14, the boundary correction factors are plotted for
five different ratios of a/t (a/t = 0.16, 0.32, 0.5, 0.7, and 0.9) for the aspect ratio a/c = 0.4. The
distributions for a/c = 0.8 and a/t = 0.32, 0.5, 0.7, and 0.9 are shown in figure 15. As shown in
figure 14, the values of F tend to be relatively constant along the crack front until they drop off
near the free edge where the crack front intersects the countersunk surface. As shown in
figure 15, the values of F are highest at the intersection of the crack front with the bottom surface
of the plate. We note that the boundary correction factors are significantly higher for smaller
values of a/t within region Il for both ratios of a/c considered.

The crack fronts are assumed to be straight in region Ill as depicted in figure 3. The mode |
stress-intensity factors normalized with respect to the remote applied stress and the length
a = a + R are plotted versus a normalized length x/t for five values of a/t (a/t = 1.1, 1.2, 1.4, 1.6,

and 2.0) in figure 16. As shown in the figure, for the largest value of a/t considered (a/t = 2.0),

the normalized stress-intensity factors are relatively constant through the thickness of the plate
except near the intersections of the crack front with the top and bottom surfaces of the plate.

12
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FIGURE 14. BOUNDARY CORRECTION FACTORS F VERSUS PHYSICAL ANGRE
FOR ELLIPTICAL CRACKS LOCATED IN REGION Il (a/c = 0.4, a/t = 0.186,
0.32, 0.5, 0.7, AND 0.9)
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FIGURE 15. BOUNDARY CORRECTION FACTORS F VERSUS PHYSICAL ANGRE
FOR ELLIPTICAL CRACKS LOCATED IN REGION Il (a/c = 0.8, a/t = 0.32,
0.5, 0.7, AND 0.9)
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To compare the present three-dimensional results with corresponding two-dimensional results
obtained from the literature, we have also plotted in figure 16 the plane strain/stress value
obtained by Fuhring [8] for a two-dimensional plate of width W having a centrally located hole
of radius R for the largest value afconsidered (shown as the dashed-dot line in the figure). It

is interesting to note that the three-dimensional results obtained for the case where a/t =2.0
when the crack front is significantly beyond the edge of the countersink are higher than the two-
dimensional value (approximately 12 percent higher).

1.2
1.15
—
N
S
S 1.1
N’
i i
o 1.05 —
b 4
-~ 4
V2 ]
0.95 .
- — - - plane stress a/W=0.21 [8]
0.9 TR RS U A [N R R WU T R R R
-0.8 -0.6 -0.4 -0.2 0 0.2

FIGURE 16. NORMALIZED MODE | STRESS-INTENSITY FACTORS ALONG
STRAIGHT CRACK FRONTS IN REGION IIl (a/t 2.1, 1.2, 1.4, 1.6,
AND 2.0)

The numerical data for the plots shown in figures 11 to 16 are given in tables 1 to 6.
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TABLE 1. TABULATED VALUES OF THE BOUNDARY CORRECTION FACTORS F
VERSUS PHYSICAL ANGLES FOR ELLIPTICAL CRACKS LOCATED IN
REGION I (a/c = 0.4, c/h = 0.4, 0.6, AND 0.8)

c/h=0.4 c/h=0.6 c/h=0.8

0 F ) F : 0 F
2.4198 2.2710 2.4198 2.2303 2.4198 22753
4.8853 2.3030 4.8853 2.2596 4.8853 2.2872
7.4453 2.3813 7.4453 2.3336 7.4453 2.3510
10.155 2.4819 10.155 2.4362 10.155 2.4547
13.082 2.5947 13.082 2.5585 13.082 2.5835
16.309 2.7140 16.309 2.6933 16.309 2.7209
19.946 2.8347 19.946 2.8333 19.946 2.8545
24.137 2.9515 . 24.137 2.9713 24.137 2.9769
29.082 3.0595 29.082 3.0994 29.082 3.0955
35.049 3.1541 35.049 3.2106 38.299 3.2070
42.393 3.2300 42.393 3.3008 49.457 3.3158
51.532 3.2819 51.532 3.3681 62.605 3.3988
62.834 3.3058 62.834 3.4040 77.057 3.4330
76.300 3.2983 76.300 3.3963 91.402 3.3978
91.154 3.2500 91.154 3.3332 104.23 3.2933
105.88 3.1434 105.88 3.1999 114.86 3.1139
119.04 2.8852 119.04 2.9057 123.33 2.7863

15



TABLE 2. TABULATED VALUES OF THE BOUNDARY CORRECTION FACTORS F
VERSUS PHYSICAL ANGLES FOR ELLIPTICAL CRACKS LOCATED IN
REGION | (a/c = 0.8, c/h = 0.2, 0.4, 0.6, AND 0.8)

¢/h=0.2

0 F
2.3831 3.2484
5.2493 3.2098
8.7088 3.1726
12.908 3.1464
18.047 3.1329
24.414 3.1341
32.435 3.1519
42.756 3.1885
56.320 3.2431
71.669 3.3020
86.316 3.3446
99.665 3.3640
111.39 3.3656
121.45 3.3180

c/h=0.4 c/h=0.6 c/h=0.8

0 F ) F 6 F
2.3831 3.3017 1.5479 3.3861 1.5479 3.6473
5.2493 3.2717 3.5622 3.3609 3.5622 3.5778
8.7088 3.2281 6.1887 3.2955 6.1887 3.4623
12.908 3.1890 9.6257 3.2187 9.6257 3.3471
18.047 3.1651 14.153 3.1486 14.153 3.2503
24.414 3.1651 20.183 3.1037 20.183 3.1779
32.435 3.1915 28.366 3.0985 28.366 3.1393
42.756 3.2389 39.792 3.1469 39.792 3.1657
56.320 3.2959 56.320 3.2521 56.320 3.2548
67.951 3.3490 72.985 3.3582 72.985 3.3379
78.982 3.3890 87.113 3.4194 87.113 3.4145
89.171 3.4249 98.536 3.4433 98.536 3.4936
98.363 3.4560 107.52 3.4644 107.52 3.5525
106.51 3.4733 114.50 3.4873 114.50 3.5873
113.65 3.4724 119.92 3.4947 119.92 3.5823
119.88 3.4508 124.13 3.4681 124.13 3.5396
125.29 3.3554 127.42 3.3443 127.42 3.4093
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TABLE 3. TABULATED VALUES OF THE BOUNDARY CORRECTION FACTORS F
VERSUS PHYSICAL ANGLES FOR ELLIPTICAL CRACKS LOCATED IN
REGION | (a/c = 1.0, c/h = 0.2, 0.4, 0.6, AND 0.8)

¢/h=0.2
0 F

2.0303 3.6581
4.6697 3.6342
8.1009 3.5887
12.561 3.5378
18.360 3.4837
25.899 3.4295
35.698 3.3804
48.438 3.3430
65.000 3.3348
81.522 3.3642
94.244 3.4192
104.04 3.4804
111.58 3.5420
117.39 3.6012
121.86 3.6561
125.31 3.7042
127.96 3.7299

c/h=0.4 c/h=0.6 c/h=0.8

0 F ) F 9 F
2.0303 3.7680 2.0303 3.9051 2.0303 4.2155
4.6697 3.7519 4.6697 3.8541 4.6697 4.0924
8.1009 3.6925 8.1009 3.7450 8.1009 3.9201
12.561 3.6166 12.561 3.6215 12.561 3.7531
18.360 3.5345 18.360 3.5032 18.360 3.5984
25.899 3.4559 25.899 3.3970 25.899 3.4601
35.698 3.3880 35.698 3.3042 35.698 3.3456
48.438 3.3326 48.438 3.2436 48.438 3.2638
65.000 3.3145 65.000 3.2560 65.000 3.2326
81.522 3.3665 81.522 3.3155 81.522 33011
94.244 3.4616 94.244 3.3915 94.244 3.4032
104.04 3.5521 104.04 3.4884 104.04 3.5057
111.58 3.6372 111.58 3.6149 111.58 3.6246
117.39 3.7218 117.39 3.7462 117.39 3.7475
121.86 3.7999 121.86 3.8675 121.86 3.8752
125.31 3.8594 125.31 3.9670 125.31 3.9953
127.96 3.8744 127.96 4.0070 127.96 4.0634
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TABLE 4. TABULATED VALUES OF THE BOUNDARY CORRECTION FACTORS F
VERSUS PHYSICAL ANGLES FOR ELLIPTICAL CRACKS LOCATED IN
REGION Il (a/c = 0.8, a/t = 0.16, 0.32, 0.5, 0.7, AND 0.9)

a/t=0.16 a/t=0.32

) F 0 F
37.092 3.4958 60.863 2.8917
38.746 3.4429 63.101 29136
40.843 3.4164 65.649 29163
43.532 3.3985 68.550 2.9195
47.029 3.3885 71.854 2.9231
51.650 3.3873 75.611 2.9281
57.853 3.3941 79.867 2.9348
66.278 3.4052 84.658 2.9422
77.662 34111 90.000 2.9492
94.614 3.3897 97.692 2.9519
109.39 3.2904 105.16 2.9374
121.09 2.9949 112.21 2.8862
118.73 2.7689

124.66 2.4829

a/t=0.5 a/t=0.7 a/t=0.9

) F 0 F 0 F
69.678 2.5243 76.268 2.3297 79.491 2.2005
70.832 2.5635 77.804 2.3681 80.857 2.2372
72.235 2.5759 79.666 2.3759 82.508 2.2426
73.943 2.5867 81.926 2.3822 84.503 2.2445
76.025 2.5959 84.664 2.3850 86.912 2.2445
78.564 2.6042 87.977 2.3836 89.814 2.2430
81.662 2.6120 91.966 2.3817 93.296 2.2381
85.433 2.6193 96.728 2.3805 97.446 2.2288
90.000 2.6252 102.34 2.3758 102.34 22132
93.632 2.6295 108.44 2.3626 108.44 2.1883
98.314 2.6299 113.65 2.3305 113.65 2.1489
104.26 2.6210 118.07 2.2686 118.07 2.0948
111.60 2.5860 121.81 2.1749 121.81 2.0138
120.29 2.4103 124.99 2.0342 124.99 1.8794
127.69 1.7791 127.69 1.6325
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TABLE 5. TABULATED VALUES OF THE BOUNDARY CORRECTION FACTORS F
VERSUS PHYSICAL ANGLES FOR ELLIPTICAL CRACKS LOCATED IN
REGION Il (a/c = 0.8, a/t = 0.32, 0.5, 0.7, AND 0.9)

a/t=0.32 a/t=0.5

0 F 0 F
57.705 3.9931 70.001 3.3344
59.911 3.7430 71.912 3.2227
62.486 3.6313 74.224 3.1616
65.492 3.5400 77.022 3.1101
69.007 3.4701 80.409 3.0697
73.116 3.4194 84.504 3.0423
77.917 3.3859 89.444 3.0287
83.513 3.3673 95.373 3.0278
90.000 3.3615 102.43 3.0392
98.706 3.3747 108.42 3.0593
106.00 3.4031 113.41 3.0784
112.06 3.4298 117.56 3.0930
117.09 3.4472 121.01 3.0982
121.26 3.4475 123.89 3.0858
124.72 3.4153 126.30 3.0417
127.60 3.2911 128.31 2.9107

a/t=0.7 a/t=0.9

0 F 0 I F ‘
76.042 3.0215 79.387 2.8432
77.622 2.9441 80.776 2.7791
79.526 2.8887 82.447 2.7243
81.822 2.8437 84.459 2.6773
84.589 2.8100 86.879 2.6422
87.921 2.7848 89.788 2.6167
91.926 2.7687 93.279 2.5995
96.721 2.7621 97.456 2.5908
102.43 2.7638 102.43 2.5840
108.42 2.7727 108.42 2.5737
113.41 2.7865 113.41 2.5716
117.56 2.8004 117.56 2.5740
121.01 2.8066 121.01 2.5712
123.89 2.7968 123.89 2.5575
126.30 2.7608 126.30 2.5294
128.31 2.6466 128.31 2.4373
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TABLE 6. TABULATED VALUES OF THE NORMALIZED STRESS-INTENSITY
FACTORS ALONG STRAIGHT CRACK FRONTS LOCATED IN REGION
n@t=11,1.2,14,1.6, AND 2.0). THE VALUES WERE OBTAINED
FOR A REMOTE APPLIED STRESS OF UNITY.

a/t=1.1 a/t=1.2
x/t K, INma X/t K,/ Vma

0.184 1.065 0.184 1.071

0.164 1.101 0.162 1.107

0.138 1.118 0.135 1.125

0.104 1.126 0.099 1.138

0.061 1.133 0.053 1.149

0.004 1.141 -0.006 1.154

-0.069 1.144 -0.083 1.151

-0.165 1.138 -0.185 1.147

-0.295 1.125 -0.322 1.141

-0.408 1.107 -0.431 1.128

-0.500 1.090 -0.520 1.110

-0.576 1.071 -0.591 1.091

-0.637 1.048 -0.649 1.075

-0.686 1.023 -0.695 1.062

-0.725 0.996 -0.731 1.047

-0.756 0.963 -0.760 1.026

-0.781 0.918 -0.782 0.988

alt=1.4 a/t=1.6 a/t=2.0
X/t K[ / ,\/E X/t K[ /‘\/7[;7 x/t K[ /W

0.184 1.074 0.162 1.113 0.164 1.117
0.164 1.112 0.121 1.144 0.125 1.146
0.138 1.131 0.076 1.156 0.083 1.156
0.104 1.141 0.026 1.160 0.036 1.161
0.060 1.147 -0.029 1.163 -0.016 1.162
0.003 1.154 -0.089 1.169 -0.073 1.162
-0.072 1.162 -0.155 1.176 -0.135 1.168
-0.169 1.170 » -0.229 1.181 -0.204 1.176
-0.298 1.169 -0.311 1.183 -0.281 1.181
-0.415 1.160 -0.391 1.179 -0.368 1.186
-0.509 1.150 -0.463 1.174 -0.445 1.182
-0.584 1.142 -0.528 1.172 -0.515 1.175
-0.644 1.133 -0.586 1.169 -0.577 1.171
-0.692 1.119 -0.638 1.159 -0.632 1.168
-0.730 1.102 -0.686 1.148 -0.681 1.165
-0.759 1.081 -0.728 1.137 -0.726 1.160
-0.782 1.042 -0.766 1.104 -0.765 1.134
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5. SUMMARY AND CONAQ.UDING REMARKS.

Mode | stress-intensyt factors alog three-dimensional elliptical and sght crack fronts are
obtained for the problem of a plate with a cengrédcated countersunk rivet hole subjected to
uniform tensile loadig. Attention is focused on shorymsmetrically located cracks initiatopat

the intersection between the countersunk and straight shank portion of the rivet hole. The stress-
intensiy factors for cracks of various shapes and lengths are obtayndtk lomain integral
method.

For cracks that have not propagategdmel the edge of the countersink (short cracks), we
assumed the crack fronts to be elliptical and obtained stress-iptewidr distributions along

crack fronts for a varigtof shapes and sizes. For the shortest cracks considered (cracks that did
not extend bgond the straight shank portion of the countersink), it was found that the boundary
correction factors dependgsaificantly on the shape of the elliptical front but do not depend
heavily on the size of the crack. For elliptical crack frontgdoel the straight shank portion of

the countersink but notet through cracks, it was found that the dependence of the boundary
correction factors on both crack size and shape was significant. For the case of straight crack
fronts in region lll, the normalized stressintensity fadors were relatively uniform through the
thickness of the plate for the longest cracks considered (i.e., once the crackiehdddebgond

the influence of the countersunk rivet hole) and the values were signifitegiler than two-
dimensional results for corresponding geognetitained from the literature.
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